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Problem 1 (Chap 6, Ex 2). Prove that

∞∏
n=1

n(n+ a+ b)

(n+ a)(n+ b)
=

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 1)

whenever a and b are positive. Using the product formula for sinπs, give another proof
that Γ(s)Γ(1− s) = π/ sinπs.

We take the product representation of Γ(s) as definition: for a, b 6= −1,−2, . . .,

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 1)
=

a+ b+ 1

(a+ 1)(b+ 1)
e−γ

∞∏
n=1

n(n+ a+ b+ 1)

(n+ a+ 1)(n+ b+ 1)
e1/n

=
a+ b+ 1

(a+ 1)(b+ 1)

∞∏
n=1

(
1 +

1

n

)
e−1/n

∞∏
n=1

n(n+ a+ b+ 1)

(n+ a+ 1)(n+ b+ 1)
e1/n

=
a+ b+ 1

(a+ 1)(b+ 1)

∞∏
n=1

(n+ 1)(n+ a+ b+ 1)

(n+ a+ 1)(n+ b+ 1)

=

∞∏
n=1

n(n+ a+ b)

(n+ a)(n+ b)
,

where we have used the identity e−γ =
∏∞
n=1(1 + 1/n)e−1/n as in the proof of Theorem

1.7. Now, to prove the reflection formula, we first derive the functional equation. For
s 6= 0,−1,−2, . . ., take a = s− 1 and b = 1 in the infinite product:

Γ(s)Γ(2)

Γ(s+ 1)
= lim
N→∞

N∏
n=1

n(n+ s)

(n+ s− 1)(n+ 1)
= lim
N→∞

1

s

N + s

N + 1
=

1

s
.

So we have Γ(s + 1) = sΓ(s)Γ(2) = sΓ(s) provided that Γ(2) = 1. This follows from
the same identity, using Γ(1) = 1 and that sΓ(s)→ 1 as s→ 0. Then for the reflection
formula, we take a = s and b = −s:

Γ(s)Γ(1− s) = s−1Γ(s+ 1)Γ(−s+ 1) = s−1
∞∏
n=1

n2

(n+ s)(n− s)

= s−1
∞∏
n=1

(
1− s2

n2

)−1
=

π

sinπs

as required.

Problem 2 (Chap 6, Ex 4). Prove that if f(z) = 1
(1−z)α for |z| < 1, where α ∈ C is

fixed, then f(z) =
∑∞
n=0 an(α)zn with

an(α) ∼ 1

Γ(α)
nα−1 as n→∞.
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It suffices to show that limn an(α)/nα−1 = 1/Γ(α). Without loss of generality, α 6=
0,−1,−2, . . .. By writing f(z) = e−α log(1−z) and noting that f (n)(z) = α(α+1) · · · (α+
n− 1)/(1− z)α+n, we have

an(α) =
f (n)(0)

n!
=
α(α+ 1) · · · (α+ n− 1)

n!
.

So

lim
n→∞

an(α)

nα−1
=

1

α− 1
lim
n→∞

(α− 1)((α− 1) + 1) · · · ((α− 1) + n)

nα−1n!

=
1

(α− 1)Γ(α− 1)
=

1

Γ(α)
,

where we have used the representation of gamma function in Chap 6 Ex 1.

Problem 3 (Chap 6, Ex 15). Prove that for Re(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx.

Note that the integral is absolutely integrable: near zero because ex − 1 > x and
Re(s) > 1; and near infinity because of exponential decay. For x > 0, write 1/(ex−1) =
e−x/(1− e−x) =

∑∞
n=1 e

−nx so that∫ ∞
0

xs−1

ex − 1
dx =

∫ ∞
0

∞∑
n=1

e−nxxs−1 dx =

∞∑
n=1

∫ ∞
0

e−nxxs−1 dx

=

∞∑
n=1

∫ ∞
0

n−se−xxs−1 dx = ζ(s)Γ(s).

Here, the use of Fubini’s theorem to interchange sum and integral is justified due to the
absolute integrability and that e−nx > 0 for all n; and we have used a change of variable
x 7→ x/n for each term of the series.

Problem 4 (cf. Chap 6, Prob 1, 2). Show that |ζ(1 + it)| = O(log |t|) as |t| → ∞.

We first prove the following representation of ζ(s) on Re(s) > 0: for every integer N ≥ 1,
we have

ζ(s) =

N∑
n=1

n−s − N1−s

1− s
− s

∫ ∞
N

{x}
xs+1

dx,

where {x} denotes the fractional part of x. The idea is to first show that the identity
holds for Re(s) > 1, and then observe that the RHS defines a holomorphic function on
Re(s) > 0. For Re(s) > 1, we write∫ n+1

n

{x}
xs+1

dx =

∫ n+1

n

x

xs+1
dx−

∫ n+1

n

n

xs+1
dx

=
1

1− s

[
(n+ 1)1−s − n1−s

]
+
n

s

[
(n+ 1)−s − n−s

]
=

(
1

1− s
+

1

s

)[
(n+ 1)1−s − n1−s

]
− 1

s
(n+ 1)−s

=
1

s(1− s)

[
(n+ 1)1−s − n1−s

]
− 1

s
(n+ 1)−s.

Summing from n = N gives∫ ∞
N

{x}
xs+1

dx = − N1−s

s(1− s)
− 1

s

∞∑
n=N+1

n−s
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because Re(s) > 1 (so that both integral and telescoping series converge). Then

ζ(s) =

N∑
n=1

n−s +

∞∑
n=N+1

n−s =

N∑
n=1

n−s − N1−s

1− s
− s

∫ ∞
N

{x}
xs+1

dx.

Using an argument similar to Proposition 2.5 and Corollary 2.6, observe that the inte-
gral1

∫∞
N
{x}x−s−1 dx (viewed as an infinite sum as above) is uniformly convergent on

any half-plane Re(s) ≥ ε, ε > 0. So the RHS gives an analytic continuation of ζ(s) to
Re(s) > 0. This proves the desired representation.

Next, for s = σ + it with σ > 0 and t 6= 0, we have |1− s| ≥ |t| and

|ζ(s)| ≤
N∑
n=1

n−σ +
N1−σ

|t|
+
|s|N−σ

σ
.

Putting σ = 1 and N = [|t|] with |t| ≥ 1, we have |s| ≤ 2|t| and N ≤ |t| < N + 1.
Therefore

|ζ(s)| ≤
N∑
n=1

1

n
+ 1 +

2(N + 1)

N
= O(log |t|)

as |t| → ∞, because
∑N
n=1 n

−1 = O(logN), while the last two terms are bounded
independent of |t| ≥ 1.

Remarks: (a) We also have |ζ ′(s)| = O(log2 |t|) as |t| → ∞, which can be proved using
Cauchy integral formula2, similar to Proposition 2.7, but using the above representation
of ζ(s) instead. (b) For s = 1 + it, t 6= 0 fixed, we have

N∑
n=1

1

n1+it
= ζ(s)− N−it

it
+ s

∫ ∞
N

{x}
xs+1

dx.

Observe that |N−it| = 1 and the last term is bounded by |s|/N which tends to 0 as
N → ∞. So partial sums of

∑
1/n1+it are bounded, but series does not converge

because N−it = e−it logN does not. This shows that the series definition of ζ(s) cannot
be extended to any point on Re(s) = 1.

1i.e. write
∫ n+1
n {x}x−s−1 =

∫ n+1
n (x−s − n−s) dx− n

∫ n+1
n (x−s−1 − n−s−1) dx, then apply mean-

value theorem as in the proposition/corollary.
2For an explicit proof, see Theorem 5.3 in https://faculty.math.illinois.edu/~hildebr/ant/

main.pdf.
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